MATLAB Exercise • Level 1

Charles J. Ammon DEPARTMENT OF GEOSCIENCES Penn State University

The Normal Vector of A
 Fault Surface

From Strike \& Dip to a Fault Normal

When visualizing a fault we are trained to think in terms of the fault strike and the fault dip. However, for some computations it is more convenient to define a plane using a vector normal to the surface. In this exercise I develop a simple script for converting from strike and dip to a fault normal. We need to choose a Cartesian coordinate system to specify the three components of our normal vector. We'll use north, east, and down (a typical seismology convention).

Let δ represent the fault dip (the angle between a horizontal surface and the fault) and ϕ represent the fault strike (measured clockwise from north). The fault normal vector is given by

$$
\begin{equation*}
\hat{n}=\left(n_{n}, n_{e}, n_{d}\right)=(-\sin \delta \sin \phi, \sin \delta \cos \phi,-\cos \delta)^{T} \tag{1}
\end{equation*}
$$

The MATLAB Script

The forward computation requires simply that we perform the computation in (1). Here's a short script to do the trick

```
function [n] = fnormal(strike,dip)
%
% function to compute the fault normal vector
        given the strike and dip (in degrees)
the strike should lie between 0 and 360 (negative ok)
% the dip is restricted to lie between 0 and 90
the dip should be measured in the direction such that
    when you look in the strike direction, the fault
    dips to your right.
%
deg_to_rad = pi/180;
%
strike = strike * deg_to_rad;
dip = dip * deg_to_rad;
%
n(1) = -sin(dip)*sin(strike); % north component
n(2) = sin(dip)*cos(strike); % east component
n(3) = -cos(dip); % vertical component
```

To use the script, you have to place the file in your MATLAB path and then execute something like

```
>> n = fnormal (0,90)
>> n =
>> 0
>>
>>
>> n = fnormal(-120,45)
>> n =
>> 0.6124 -0.3536 -0.7071
```


Exercises

Exercise 1: Compute the fault normal vectors and complete the table for planes with the following strikes and dips:

Strike $\left({ }^{\circ}\right)$	Dip $\left({ }^{\circ}\right)$	North	East	Down
0	90			
90	45			
180	45			
45	90			
-45	50			
135	12			
43	56			
234	86			

