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MATLAB Solution for the
Toroidal Modes of a Vibrating Spherical Shell

Draft 2.6
Charles J. Ammon, Saint Louis University

One advantage of studying theoretical seismology today is the 
availability of computer tools that we can use to explore equa-
tions and their solutions. Tools such as MATLAB create new 
opportunites for deeper understanding – with a modest effort 
we can investigate the nature of problems that have long been 
fundamental to the interpretation and understanding of seismo-
grams. In these notes, I outline a MATLAB solution for com-
puting toroidal normal modes in radially symmetric earth 
models. To simplify the discussion, I work with simplest 
model - a uniform shell (Figure 1). This physical model is 
actually a surprisingly good approximation to Earth at the 
longest periods of oscillation. Although Earth has a very 
dense, mostly iron core, the fluid outer core results in a zero 
toroidal stress at the core-mantle boundary, much like the elastic shell model shown in Figure 1.

To compute the eigenfrequencies and eigenfunctions of the model we must solve two problems. 
First, we must develop a tool to integrate two coupled first-order ordinary differential equations 
(ODE’s), and second we must develop a tool to identify those values of frequency that produce a 
zero surface stress when the ODE’s are integrated. 

The Equations of Motion

A separation of variables solution to the homogeneous elastodynamic equations of motion results 
in three equations for the three space variables . The longitudinal equation is a simple 
second order harmonic ordinary differential equation. The equation containing colatitude, , 
reduces to the a form of Legendre’s equation with solutions that are the Associated Legendre 
functions. The equation in radius is a form of Bessel’s equation, which has solutions in terms of 
spherical Bessel functions. Alternatively, Bessel’s second order differential equation can be 
reduced to a set of first-order, coupled ODE’s. Specifically, for the toroidal modes of a radially 
symmetric model the radial equations are equivalent to the eigenvalue problem

.   (1)

r = a

r = b

Figure 1.  Model cross section. 
Since the outer core is fluid, a shell 
is representative of Earth for toroi-
dal vibrations. 
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 and  are the displacement and the stress,  is the frequency,  is the density,  
is the shear modulus, and l is the radial order (a separation of variables constant). You can find the 
derivations of the equations in Dahlen and Tromp (1999) (our equation (1) corresponds to equa-
tions 8.114 and 8.115). For low frequencies and low radial orders, l, these equations can be inte-
grated numerically using a Runge-Kutta approach (e.g. Press et al, 1988). 

Of course before you integrate (1), you must specify values of l, the density and shear modulus, 
and the frequency, . Integration produces two functions of radius,  and . If 

 and , the assumed value of  is an eigenfrequency (  is an eigenvalue) 
and  and  are eigenfunctions. We don’t know a priori the eigenfrequencies that satisfy 
the zero-stress boundary condition on the top and bottom of the shell. However, if we start the 
integration at the bottom of the shell ( ), we can guarantee that the stress at the bottom is 
zero by using initial values for the displacement and the stress equal to 1.0 and 0.0 respectively. 
The arbitrary amplitude of the displacement can be accommodated in normalization terms.

 In general, there are an infinite number of frequencies that satisfy equation (1) for each value of l. 
A systematic search must be performed to identify all the roots in a specific frequency range for a 
particular value of l. In essence, we must solve an equation that has the form

.   (2)

The form of the function, F, is described in equation (1), and we must solve those equations for 
the surface stress,  for each assumed value of l and . Finding solutions that have zero sur-
face stress is a numerical root finding problem - you assume a value of  and integrate the equa-
tions to see if it produces zero stress at the outer surface.

The MATLAB Solution

Our solution will involve three different M-scripts, two are needed to solve the equations of 
motion (1), and the third is used to find the values of  that are eigenfrequencies (Figure 2).    
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Surface-Stress Calculator

Figure 2.  Solving the eigenvalue problem for the vibrating shell is accomplished using three scripts. The main 
purpose of each script is described in the above chart, which also shows the dependencies (the third “calls” the 
second, which requires the first).
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The first two M-files handle the computation of the surface stress using the Runge-Kutta routines 
in MATLAB (the surface-stress calculator). The third script repeatedly calls the surface-stress cal-
culator as part of a simple root finding scheme that uses a fixed step size in frequency to identify 
regions containing the roots, and then relies on the MATLAB root-finding routine fzero() to refine 
the value of the eigenfrequency. I describe each script in more detail below, and conclude with 
some results for specific values of l.

Computing the Surface Stress

To integrate the equations and evaluate the surface traction I created two M-files. The first com-
putes the stress and displacement derivatives using the differential equations (1). The input argu-
ments and return values of this M-file are of the special form required by the Runge-Kutta 
functions in MATLAB and the name of this M-file is an argument to the MATLAB Runge-Kutta 
function. The first input argument is the independent variable of integration (radius for our prob-
lem), the second is a vector that contains the dependent variables in the coupled first-order differ-
ential equations (displacement (1) and stress (2)). I set up , , , and l as global variables so 
that they can be set and changed from the main script (listed later). The same global values are 
used in all the scripts. It’s a good idea to keep this script as simple and short as you can, since it’s 
executed often. Listing 1 contains the details. 

The second M-file contains a script that is used to calculate the surface stress and is shown in List-
ing 2. For a given value of , the script surface_stress.m performs the computations needed to 
compute the stress and displacement eigenvectors. Note the brevity and simplicity of the two 
scripts used to solve equation (1). Since the Runge-Kutta routines are implemented in MATLAB, 
we need only a two-line script to compute the derivatives and a one-line call to ode45() to inte-
grate the equations. Once the integration is complete, we look up the surface stress (at r = 6371 
km), which after execution is stored in the last element of array sd.

Script Listing 1: stress_disp_tor.m

function dsdd = stress_disp_tor(r,s)
global mu rho omega l c0;
%
%  The inpute values of s(1) and s(2) are W(r) and T(r) respectively
%  The returned deriatives are stored in dsdd()
%
% The displacement
dsdd(1,1) = s(1) / r + s(2) / mu;
%
% the stress
dsdd(2,1) = ((l-1)*(l+2)*mu/(r*r) - rho*omega*omega)*s(1) - 3*s(2)/r;

µ ρ ω

ω
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Finding the Roots

The third and final script implements a simple root-finding search and provides visual feedback 
on the process. You should have no trouble finding lucid descriptions of the ideas behind search-
ing for roots, or zeros, of a function (e.g. Press et al, 1988). The basic idea in this script is to begin 
a search at a small value of frequency (I chose f = 1/3600 corresponding to a period of one hour) 
and march forward with a small step size (df), looking for steps that produce a change in sign of 
the surface stress estimate, . If the sign of the surface stress changes then we know that 
we’ve bracketed at least one zero of the function. Of course we have to be careful, a step size too 
large may jump more than one root in one step. If we choose too small a value for df, then we 
spend much more time searching. More clever approaches are more appropriate when dealing 
with more complicated models. For this example I opted to use a small step size rather than get-
ting too fancy with something adaptive. 

Once I know two frequency values that bracket a root, I use the MATLAB function fzero() to find 
that root. fzero() uses a bisection-interpolation procedure to find the root of the function. You must 
pass the name of the M-file used to calculate the surface stress and the bounding values of fre-
quency to the fzero() routine, and it returns the value of the root. MATLAB allows you to control 
the options in the search for roots, but I found the default values suitable for this problem.

Script Listing 2: surface_stress.m

function value = surf_stress(f)

global mu rho omega l c0 radius sd;
%
rspan = [2891000, 6371000]; % radius limits in meters
sd0 = [1.0; 0.0]; % the initial values of [displacement stress]
%
omega = 2 * pi * f; % angular frequency
%
% the integration is performed here, by MATLAB
% the first argument is the name of our routine that calculates
%    the derivatives
% on return the vectors radius and sd contain the values of radius
%   and the displacement and stress eigenfunctions
%
[radius,sd] = ode45('stress_disp_tor',rspan,sd0);
%
nr = size(sd(:,2)); % number of points need in the integration
value = sd(nr(1),2); % pull out the top value of stress
                     % (surface, r = 6371 km).

T̂ a( )
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Script Listing 3: spshell.m

clear all;
global mu rho omega l c0 radius sd;
rho = 4380; % a rough average of earth’s mantle
mu = 5930*5930*rho;  % properties of the shell 5.93 km/s shear velocity
%
l = 25; % the angular order - change this and execute spshell
i = 1; j = 1; % counters, j will be the root number (starting at one)
% 
f = 1/3600; % the initial frequency to start (T = one hour)
df = 0.0002; % the frequency step size (chosen by trial and error)
oldvalue = 0;
%
while(f < 0.08) % stopping at 0.08 is arbitrary...
   %
% compute the surface stress for this frequency
%  this is calling the scripts listed above
   surface_stress = surf_stress(f); 
%
% here we see if the value of the surface-stress has changed sign
%  which would indicate that we passed at least one root
% If we did cross a root, I call the matlab function fzero to
%  refine the root.
% Then I store the root in the vector root() and plot the results.
%
if(oldvalue * surface_stress < 0)
   theRoot = fzero('surf_stress', [oldf f]);
   root(j) = theRoot; 
   subplot(3,3,j); % this is where the graphics begin
   mytitle = sprintf(' = %.2f mHz, T = %.0f min',root(j)*1000,1/theRoot/60);
   plot(sd(:,1)/max(abs(sd(:,1))),radius/1000,'b',sd(:,2)/ ...
        max(abs(sd(:,2))),radius/1000,'r');
   axis([-1.2 1.2 2890 6800]);grid;
   title(['\omega' mytitle]);
   txt = sprintf('%d',j-1); text(-1,6371,['n = ' txt]); %root label
   if mod(j-1,3) == 0
      ylabel('radius (km)');
   end % this is the end of the graphics commands
   if( j = 9 ) f = 1e6; end % this halts the search after nine plots
   j = j + 1;
end
%
% save the old values of the stress and frequency
oldvalue = surface_stress;
oldf = f;
%
% step forward in frequency
%
f = f + df;
i = i + 1;
% provide some feedback on the surface-stress value 
%   (which is huge for large l)
disp(sprintf('%d %.4f %f %.1f %.2f', i, surface_stress, f, 1/f, 1/f/60))
end
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The Uniform Shell Model

As mentioned earlier, the shell is a better approximation to Earth than you might think. Approxi-
mate values of mantle parameters for the PREM (Preliminary Earth Reference Model) are 4,380 
kg/m3 and 5.93 km/s for the density and shear velocity respectively. We can compute the shear 
modulus using .

Results!

Much of the third script is actually devoted to plotting the results. What do they look like? 
Figure 3 is a plot of the results of running the scripts described above after setting l = 2, and 
Figure 4 and Figure 5 are similar plots for l = 25, and l = 100, respectively. In each illustration, the 
eigenfrequency in millihertz and the eigenperiod (to the nearest minute) are listed in the subplot 
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Figure 3.  Eigenfrequencies and eigenfunctions (displacement in blue, stress in red) for a vibrating shell 
overlying a fluid sphere. The shell density is 4,380 kg/m3 and the shear velocity is 5.93 km/s. The radial 
order for the calculation, l, is equal to two. The eigenfrequency in millihertz, and the eigenperiod, to the 
nearest minute, are shown above each panel.
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title. The blue line identifies the displacement eigenfunction, the red line the stress eigenfunction. 
Note that each of the stress eigenfunctions satisfies the zero-stress boundary conditions at the 
shell’s inner (2891 km) and outer (6371 km) radii. You can count the number of nodes in the each 
displacement eigenfunction and see the integer increase in nodes associated with each higher 
mode (this is a consequence of the fact that we are solving a Sturm-Liouville problem - see 
Dahlen and Tromp, 1999). Table 1 is a list of the values with more precision than shown on the 
illustrations. 

The l = 2 case includes the gravest toroidal mode . The uniform shell with mantle-like proper-
ties predicts a vibration of 0.3638 mHz, or approximately 2,748 seconds, which is about 45.8 
minutes. The value predicted by PREM is about 44.0 minutes, the value observed by Widmer et 
al., 1992 (GJI) is 44.25 minutes (0.3766 mHz). That means the uniform shell is predicting the 
period in minutes to within about 3.5%.    
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Figure 4.  Same as Figure 3, but for l = 25.
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Table 1: Eigenfrequencies (mHz) of a Uniform Shell Model

0 1 2 3 4 5 6 7 8

2 0.3638 1.1046 1.8472 2.6560 3.4870 4.3271 5.1719 6.0193 6.8684

25 4.0818 4.9839 5.6526 6.2576 6.8279 7.3684 7.8742 8.3834 8.9570

100 15.4163 16.7158 17.6547 18.4788 19.2384 19.9550 20.6402 21.3015 21.9436

Table 2: Observed Eigenfrequencies (mHz) (Gilbert & Dziewonski, 1975)

0 1 2 3 4 5 6 7 8

2 2.256 2.384 2.489 2.750 2.913
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Figure 5.  Same as Figure 3, but for l = 100. Note the eigenfunction of the fundamental mode is extending much 
less into the shell.
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Ideas for Exploring the Solution

Here are some ideas to help you get you started on ways that you can modify the scripts to explore 
these solutions or solutions to analogous problems. Once grasp the details of the examples, it’s 
hard not to generate ideas new numerical experiments, so you might not want to stop with these. 
Just make sure you understand the scripts before you begin modifying.

Exercise (1).  Try creating a linear shear-modulus model, , with a surface value 
of 682 kbar and a core-mantle value of 2938 kbar; and , with a surface value of 
2.69 g/cm3 and a core-mantle boundary value of 5.56 g/cm3.  

Exercise (2).  Try computing the dispersion for a two-layer mantle with an outer shell, r = 5701 to 
6368 with a shear velocity of 5.04 km/s and a density of 3.57 g/cm3, and an inner shell from 3480 
to 5701 with a shear velocity of = 6.81 km/s and density of 4.93 g/cm3. Explore the sensitivity of 
the eigenfrequencies to variations in shear velocity and density.

Exercise (3).  A third-order polynomial fits to the density and shear modulus of PREM’s crust and 
mantle are given in the following equations. 

 

where  (the equations are for radius in kilometers). Modify the MATLAB 
scripts to compute the eigenvalues and eigenvectors for this model and compute the l = 2 eigen-
frequencies and compare them with those of the uniform shell. Does the fit to  improve? Does 
the fit to other modes improve (see Table 3)?

Exercise (4).  Implement a safeguard for missed roots by counting the zero crossings in the eigen-
function to make sure that we have increased the number of nodes by one.

Exercise (5).  Modify the scripts to solve the coupled, first-order differential equations for the 
spheroidal, radial oscillations of an elastic planetary model (Equations 8.149-8.150 of Dahlen and 
Tromp, 1999). This is slightly more involved, since you have to start the integration from the cen-
ter of the planet using the analytic expressions for the solution of a uniform elastic sphere.

Exercise (6).  Modify the scripts to solve the coupled, first-order differential equations for the 
non-radial spheroidal problem (Equations 8.135-8.140 of Dahlen and Tromp, 1999). This is much 
more involved, since you have to start the integration from the center of the planet using the ana-
lytic expressions for the solution of a uniform sphere.

Exercise (7).  Set up a script to search for an optimal value of shear modulus and density that 
match the observed eigenfrequencies of Earth. That is, step through values of shear modulus and 

µ r( ) ar µ0+=
ρ r( ) br ρ0+=

ρ r( ) 2.84710– 10 10–× r3 3.84976 10 6–× r2 1.76479 10 2–× r– 32.4479+ +≈

µ r( ) 8.11871– r3 9.56717 104× r2 4.250608 108× r– 9.578569 1011×+ +≈

3480km r 6368km≤ ≤

To 2
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find that which matches Earth’s eigenfrequencies best. Some observed values of the fundamental 
mode toroidal eigenfrequencies are

Minimize the sum of the square misfits between the observed and predicted eigenfrequencies (or 
eigenperiods) and present your results as a contour plot of misfit as a function of shear modulus 
and density.

Exercise (8).  Solve the analogous problem for Love waves for a flat-layered structure underlain 
by a half-space. The eigenvalue problem can be written as

For this problem you must find the appropriate value of k for each frequency, , where 
T is the period of interest. 

Place the origin ( ) within the half-space and assume that z is positive above the origin. Then 
the layer(s) is(are) in the range of positive z values. Start the upward integration from the origin 
within the underlying elastic half-space. With this choice of coordinates, we have initial condi-
tions,

 ,   (1)

where  because of our choice of origin, and

 .   (2)

Note that you use the value of  appropriate for the half-space in the initial conditions. You inte-
grate the equations starting from  up to the top of the crust. To avoid numerical overflow 
during the integration, place the origin within the half space, about three times a shear-wavelength 
in the half-space. 

Try a model with a 40 km thick crust ( ,  kg/m3) lying above the mantle 
( ,  kg/m3) and compute the eigenfunctions and values of wavenumber, 
k, for periods of 120, 80, 50, 25, and 10 seconds. Think about an appropriate range of k for the 
root search; you can place limits on the values it will have. 

Table 3: Observed Eigenfrequencies (Widmer et al., 1992)

Mode:

f (µHz): 376.60 587.26 766.73 928.97 1079.51
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Exercise (9).  Compare the fundamental mode eigenfrequency predictions of a spherical Earth 
model with those of a flat-lying model with Earth flattening. See Box 9.9 of Aki and Richards 
(1980) for a discussion of Earth flattening transformations. 
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